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This paper presents a survey of the reported research about students' errors, 
difficulties and conceptions concerning elementary statistical concepts. Information 
related to the learning processes is essential to curricular design in this branch of 
mathematics. In particular, the identification of errors and difficulties which students 
display is needed in order to organize statistical training programmes and to prepare 
didactical situations which allow the students to overcome their cognitive obstacles. 
This paper does not attempt to report on probability concepts, an area which has 
received much attention, but concentrates on other statistical concepts, which have 
received little attention hitherto. 

  
1. Introduction 

 
 The teaching of statistics is currently increasing substantially in many countries, due to 

its widely recognized place in the general education of citizens. Some countries have 
dedicated much effort to design curricula and specific materials, for example those produced 
for the Schools Council Project on Statistical Education in England by Holmes et al. [I], the 
Quantitative Literacy Project in USA Landewehr and Watkins [2], Landewehr et al. [3], 
Gnanadesikan et al. [4]), and Azar y Probabilidad in Spain (Godino et at. [5]). The increasing 
interest in teaching statistics is also shown by the existence of specific journals (Teaching 
Statistics; Induizioni; Stochastik in der Schule); by regular international conferences (ICOTS 
I in Sheffield, 1982 [6]; ICOTS II in Victoria, 1986 [7]; ICOTS III in Otago, 1990 [8]) by an 
ongoing series of round table conferences promoted by the ISI (most recently at Lennoxville 
in 1992) and by the formation in 1992 of an international association, IASE (International 
Association for Statistical Education). This interest is also demonstrated by the setting up of 
Centres for Statistical Education in England, Italy and USA, the Newsletter of the 
International Study Group for Research on Learning Probability and Statistics from the 
University of Minnesota; the Edstat bulletin board and, very recently, the electronic 
Journal/or Statistical Education published by North Carolina State University- 

The greater emphasis given to statistics in the different curricula, for example, the 
N.C.T.M. Standards in the USA [9], the Mathematics National Curriculum for England and 
Wales [10] and the new Spanish curricular proposal [11, 12] requires an intensive preparation 
of teachers, in order to allow them to successfully accomplish their educational goal. Many 
teachers need to increase their knowledge of both the subject matter of statistics and 
appropriate ways to teach the subject. This preparation should also include knowledge of the 
difficulties and errors that students experience during the learning of this topic. 

The aim of this paper is to contribute to the diffusion of the results of research related to 
difficulties and errors, which are not sufficiently known by teachers. Some surveys of 
research in probability and statistics education have been reported: Hawkins and Kapadia 
[13], Garfield and Alhgren [14], Scholz [1 5] and Shaughnessy [16], but these works have 
been oriented to researchers rather than to teachers and their main goal has been to identify 
new research questions. Moreover, they have been focused primarily on probability, because 
the research in this area is far more extensive than that which relates to statistical concepts, 
although a relevant exception is the new book for statistics teachers by Hawkins et al. [17]. 

In this paper, we analyse research results concerning some of the main elementary 
statistical concepts and procedures, which have been included in many recent curricular 



proposals for teaching statistics at elementary levels. This analysis shows the complexity of 
some of these topics, and should provide the teacher with a deeper understanding of pupils' 
stochastical reasoning. 

We consider it necessary to start this exposition by explaining the relevance of this type 
of research and by defining some related theoretical concepts. Nevertheless, we advise the 
reader that: 
• statistics has received, to date, less attention than other mathematical topics; 
• most research has been carried out in experimental situations and very little has been 

concerned with normal classroom practice; 
• much has been with very young subjects or 18 + college students and rather little with the 

11-16 age range; 
• most early research was undertaken by psychologists rather than by statistical educators, 

although that has begun to change. 
 
 2. Research on errors, conceptions and obstacles: some theoretical concepts 
 
An important part of the theoretical and experimental research which is, at present, 

being carried out in mathematics education, arises from the observed fact that students fail 
when they are asked to complete some tasks. Sometimes their responses are wrong, when 
compared with a standard accepted answer. Or, simply, they are unable to provide any answer 
at all. If this failure is not solely due to inattention, we say that the task is too difficult for the 
particular students. As Centeno ([18] p. 142) points out, 'a difficulty is something that inhibits 
the student in accomplishing correctly or in understanding quickly a given item. Difficulties 
may be due to several causes: related to the concept that is being learned, to the teaching 
method used by the teacher, to the student's previous knowledge, or to his ability'. 

 Moreover, errors and difficulties do not arise in a random, unpredictable way. 
Frequently it is possible to discover regularities in them, to find some association with other 
variables of the proposed tasks, of the subjects, or of the present and past circumstances. 
Didactic research is directed to characterize these regularities and to build explanatory 
models, in terms of relationships among the intervening variables. Some authors, such as 
Radatz [19], consider that the error analysis 'should be considered a promising research 
strategy for clarifying some fundamental questions of mathematical learning' (p. 16). In the 
same way, Borassi [20] presents the analysis of errors in mathematical education as 'a 
motivational device and as a starting point for creative mathematical exploration, involving 
valuable problem solving and problem posing activities' (p. 7). 

A widely shared principle in educational psychology is stated by Ausubel et al. [21], 'the 
most important factor to influence learning is the student's previous knowledge. We ought to 
discover it and to teach consequently'. A recent interest within mathematics education 
research is exploring students' conceptions (Confrey [22]), which is a consequence of the 
aforementioned principle. 

A difficulty is that some of these conceptions, which allow the student to solve correctly 
a given set of problems, are found inappropriate or inadequate when applied to more general 
situations. The student shows resistance to replacing these conceptions. In these 
circumstances, we speak of the existence of a cognitive obstacle which could explain the 
observed errors and difficulties. Brousseau [23] describes the following features of obstacles: 
a. An obstacle is knowledge, not a lack of knowledge. 
b. The student employs this knowledge to produce the correct answer in a given context, 

which he frequently meets. 
c. When this knowledge is used outside this context, it generates mistakes. A universal 

answer requires a different point of view. 
d. The student ignores the contradictions produced by the obstacle and resists establishing a 

deeper knowledge. It is essential to identify the obstacle and to replace it in the new 



learning. 
e. After the student has overcome the obstacle, recognising its inexactitude, nevertheless it 

recurs sporadically. 
 
Brousseau has identified three kinds of obstacle: 

a. Ontogenic obstacles (sometimes called psychogenetic obstacles) are due to features of 
child development. For example, proportional reasoning is required to understand the idea 
of probability. 

b. Didactical obstacles arise from the didactical options chosen in teaching situations. For 
example, introducing new symbolism such as 

  (∑xi )/n 
 when the students need to work with concrete examples. 
c. Epistemological obstacles are intrinsically related to the concept itself, and carry part of 

the meaning of the concept. For example, circularities which occur in the different 
definitions of the meaning of probability (classical, subjective, . . .) which show the 
necessity of an axiomatic definition. So, a necessary condition to build a relevant 
conception for a given concept is to identify and to overcome those obstacles, using 
historical and didactical analysis. 

 
Finally, we note that other difficulties experienced by students are due to a lack of the 

basic knowledge needed for a correct understanding of a given concept or procedure. The 
purpose of the characterization of mathematical conceptions and obstacles is that this allows 
us to identify the different components which are implied in the understanding of a given 
concept. Recent research, for example, that concerning ‘acts of understanding’ in the context 
of the limit of a numerical sequence (Sierpinska [24]), shows the complexity of the meaning 
of mathematical objects. 

  
3 Frequency tables and graphical representation of data 

 
 We start our exposition about errors and difficulties in learning statistics with those 

related to frequency tables and graphical representations. 
Ability to critically read data is a component of numerical literacy and a necessity in our 

technological society. Curcio [25] has distinguished the three following different levels in the 
comprehension of data: 
a. Reading the data in which interpretation is not needed. Only facts explicitly expressed in 

the graph or table are required. 
b. Reading within the data, which requires comparisons and the use of mathematical 

concepts and skills. 
c. Reading beyond the data where an extension, prediction or inference is needed. 
 

 For example if we analyse the tasks related to the interpretation of a scatter plot, 
‘reading the data’ refers to questions about the labelling of the plot, interpretation of scales, or 
finding the value of one of the coordinates of a point given the other one. ‘Reading within the 
data’ refers, for example, to questions about the intensity of the co-variation, about whether 
this relationship could be represented or not by a linear function, or about whether the 
dependence is direct or inverse. Finally, if we require prediction of the y value for an x 
coordinate value not included explicitly in the graph, we would be working at the ‘reading 
beyond the data’ level. 

Curcio assessed the effect of prior knowledge of the topic, mathematical content and 
graphical form on understanding the mathematical relationships expressed in graphs. He 
found that the main difficulties appear at the two high levels ('reading within the data' and -
reading beyond the data') in the interpretation of the graphs and also he showed the effect of 



grade and age differences on these difficulties 
Pereira-Mendoza and Mellor [26] undertook research into 9 to 11 year old students' 

conceptions in bar graphs. They reported errors in scales, lack of identification of patterns in 
graphs, errors in predictions, and inappropriate use of information. 

Li and Shen [27] found many examples of incorrect choice of graph in statistical 
projects by secondary students. Some used a line graph with qualitative variables or a bar 
graph to represent the evolution of an index number through a sequence of years. The 
problem of incorrect choice of graphical representation is worsened by the increasing 
availability of graphical software. Li and Shen have remarked that through software 
restrictions and students' lack of knowledge about the software, very often the chosen scales 
are inadequate. Other common technical weaknesses reported by Li and Shen were: 
• The scales of either or both the vertical and horizontal axes are omitted. 
• The origin of coordinates is not specified. 
• Insufficient divisions in scales on the axes are provided. 
• The axes are not labelled. 

 
At other times, inappropriate use of graphical software hides a misconception, as, for 

example, when in a pie chart the sectors are not proportional to the frequencies in the 
categories. The ease of making graphs with a computer carries with it the danger of not 
applying commonsense; for example, comparing in the same graph 30 chairs with 50 kg of 
meat. These problems can arise from too much choice provided in the software. 
  

4. Summaries of the distribution: statistical measures 
 

4.1. The mean 
 The mean is not only one of the most important concepts in statistics, but also it has 

many applications in everyday life. This concept is simple in appearance, but Pollatsek et al. 
[28] found errors in combining two weighted means as if they were simple means, as in the 
following item: 

 
There are ten people in an elevator, four women and six men. The average weight of 
the women is 120 pounds and the average weight of the men 180 pounds. What is the 
average of the weight of the ten people in the elevator? 

 
There are a number of ways to go wrong when applying the computational rule: for 

example, using (120+180)/2 = 150, has been reported in the aforementioned research. 
Hawkins et al. [17] point out that this is not a sensible question, because of the two different 
distributions which are involved, but this problem could be set in terms of a student doing 
different numbers of hours at different vacation jobs. 

The situations in which a weighted mean must be computed are not easily identified by 
students. Li and Shen [27] noted that, when using data grouped in intervals, students 
sometimes ignore the frequency of each one of the intervals when computing the mean. 

Traditionally great emphasis has been placed on computational aspects of data analysis 
and this has been reflected in the research. Undeniably, the meaning of many statistical 
concepts depends upon a numerical context. An important question which has not yet been 
addressed is: 'In practice, can conceptual understanding be separated from computational 
competence?' 

 Another different item used in research by Pollatsek el al. [28] was designed to 
evaluate university students' conceptions about the expected value of an observation of a 
random variable for which the population mean is known. 

 
You know that on average the verbal score of the population of high school seniors in a 



large school system is 400. You pick a sample of 5 students. The first 4 students in your 
sample have the following scores: 380, 400, 600, 400. What do you expect the fifth 
student's score to be? 
 
The 'correct' answer to this item is 400, the expected value in the population. But, 

nevertheless, some students erroneously thought that they would get a better estimate of the 
last student's score by computing the number that would make all five-scores average to 400. 

 These results show that the difficulties with the mean are not only produced at 
computational level. Skemp [29] has drawn the distinction between instrumental and 
relational understanding of a concept. Instrumental understanding consists of having available 
a collection of isolated rules for arriving at the answer to specific problems. Relational 
understanding consists of having available appropriate schemes sufficient to solve a much 
broader class of problems. In a similar sense, Hiebert et al. [30] speak about conceptual 
knowledge and procedural knowledge. 

Mevarech [31] observed that a possible explanation to the procedural errors found by 
Pollatsek et al. [28] is that students mistakenly assume that a set of numbers together with the 
operation of arithmetic mean constitutes a mathematical group satisfying the four axioms of 
closure, associativity, identity element and inverse element. This belief is obviously false, as 
can be seen in the following examples: 
a. In calculating the overall mean of three given numbers one will obtain a different mean 

when averaging the first two numbers with the third number than when averaging the last 
two numbers with the first number. 

b. An identity number does not exist, because the value of the mean is influenced by the 
value of every score in the distribution. Nevertheless, some students believe that adding a 
new value of zero to a distribution does not alter the value of the mean. 
 

When the statistical measures mean and variance are first introduced to students, they 
constitute completely different operations, not extensions of those which are already known. 
However, novice students may unconsciously relate the properties which they know hold for 
the arithmetical operations to the mean and variance. So, the emphasis put into the learning of 
fundamental properties of arithmetical operations may constitute an obstacle to understand the 
computation of the mean value, because to this operation is given some non-existent 
properties. 

The research to which we have referred above concerns the computational aspects of 
the mean. Concerning conceptual understanding, Strauss and Bichler [32] studied the 
development of children's understanding of the mean and they distinguished the following 
properties: 
a. The average is located between the extreme values. 
b. The sum of the deviations from the average is zero. 
c. The average is influenced by all the values. 
d. The average does not necessarily equal one of the values that were summed. 
e. The average can be a fraction that has no counterpart in physical reality. 
f. When one calculates the average, a value of zero, if it appears, must be taken into account. 
g. The average is representative of the values hat are averaged. 

 
For each one of these properties they used different tasks, varying the material used in 

the testing (continuous, discrete) and the medium of presentation (story, concrete and 
numerical). No significant effects were found for the material or the medium of presentation. 
Their results also suggested that the children’s understanding of the mean changes with age 
and that properties (a), (c), (d) are easier than (b), (f) and (g). 

We have stated that the mean is a ‘typical’ or ‘representative’ value of the distribution. 
Campbell [33] noticed that, for this reason, there is a tendency to situate the mean in the 



centre of the range of the variation of the data. This is true when the distribution is 
symmetrical, but, if it is not, the mean is shifted towards one of the extremes and the median 
or mode would be a better representative of the data. Understanding the idea of ‘typical value’ 
implies, according to Russell and Mokros [34] three different types of abilities: 

 
a. Given a data set, understanding the necessity of employing a central value and choosing 

the best one for the particular case. 
b. Building a data set which has a given mean value. 
c. Understanding the effect that a change in all or in a part of the data has on the averages 

(mean, median, mode). 
 

Russell and Mokros [34] studied 4th to 8th grade students' conceptions about averages, 
using these kinds of tasks, and they found the second type was the most difficult. This type of 
task has also been proposed by Goodchild [35] who provided students with matchboxes upon 
which was printed 'average content 35 matches'. One of his questions required the pupil to 
make up an hypothetical distribution for the content of 100 boxes. The most notable feature of 
these distributions was their lack of form, because the graph did not look at all bell-shaped. 
Goodchild suggested that this is due to a lack of understanding of the average as a measure of 
location of the distribution which results from a stochastic process. 

Russell and Mokros also found four general categories whereby to classify the students' 
misconceptions about averages: 
a. the 'most frequent value' or mode; 
b. the 'reasonable value'; 
c. the 'midpoint'; 
d. an 'algorithmic relationship'. 

 
Each one of these aspects may be true in a given circumstance but may not be 

appropriate in another. They ended their paper by pointing out the necessity of the use of 
different contexts and representations in the teaching of a mathematical concept. 

 In summary, the inability of some students to solve problems is that they have yet to 
acquire a purely formal concept for the mean. Knowledge of a computational rule not only 
does not imply any deep understanding of the underlying concept, but may actually inhibit the 
acquisition of a more complete conceptual knowledge. Learning a computational formula is a 
poor substitute for gaining an understanding of the basic underlying concept. Most students 
know the rule by which the mean is calculated. If, however, students have only the 
computational knowledge of the mean, they are likely to make predictable kinds of error in all 
but the most transparent problems. 

 
4.2. Measures of spread 

The study of frequencies cannot be reduced to the study of averages; two different data 
sets with the same average may have different degrees of variability. Campbell [33] has 
pointed out that a frequent error is to ignore the spread of data. Lovie and Lovie [36] reported 
that when estimating means the variance is a factor, and that accuracy in estimating variance 
depends on the magnitudes involved. 

The standard deviation measures how strongly data depart from the central tendency. 
Nevertheless, Loosen et al. [37] noticed that many textbooks put a stronger emphasis on the 
heterogeneity among the observations than on their deviations from the central tendency. As 
Loosen et al. note, the words used: variation, dispersion, diversity, spread, fluctuation, etc., 
are open to different interpretations. It is clear to the teacher whether these words refer to a 
relative or an absolute diversity. In one experiment, they took 154 psychology freshmen who 
had not received any lectures on variability. They showed the students two different sets of 
blocks, A and B. The lengths of blocks in set A were 10, 20, 30, 40, 50 and 60 cm. and the 



lengths of blocks inset B were 10, 10, 10, 60, 60 and 60 cm.  
The students answered as follows: 50% said set A was more variable, 36% said B and 

14% said they were equally variable. Loosen el al. interpreted this as showing that the 
intuitive concept of variability is concerned with 'unalikability', i.e. how much the values 
differ from each other (rather than from some fixed value such as the mean). In this sense, set 
A can certainly be considered more variable than set B. However, the standard deviation for 
set A is less than that for set B, indicating that standard deviation is a special measure of 
variability. 

Mevarech [31] found, in university students, similar difficulties in the calculation of 
variance as when calculating the mean. In particular, the students tend to assume that the data 
set and the operation of variance together constitute a group structure. However, Mevarech's 
analysis is not entirely convincing. 

One of the most common uses of the mean and standard deviation is the computation of 
z-scores. Most students have no difficulty in understanding this concept nor in computing z-
scores for a particular data set. Nevertheless, Huck et al. [38] have noticed two widespread 
students' misconceptions concerning the range of variation of z-scores calculated from a finite 
sample or from a uniform distribution. 
On the one hand, some students believe that z-scores will always range from -3 to +3. Other 
students think that there is no restriction on the maximum positive and negative values for z-
scores. Each of those beliefs is linked to a misconception about the normal distribution. The 
students who think that z-scores always vary from-3 to + 3, have frequently used either a 
picture or a table of the standard normal curve, with this range of variation. In a similar way 
the students who believe that z-scores have no upper or lower limits, have learned that the 
tails of the normal curve are asymptotic to the abscissa and they make an incorrect 
generalization, because they do not notice that no finite distribution is exactly normal. 
 For example if you consider the number of girls out of ten newborn babies this is a random 
variable X which follows the binomial distribution with n = 10 and p=0.5. The mean of this 
variable is np=5 and the variance is npq=2.5. So the maximum z-score that could be obtained 
from this variable is zmax = =(10-5)/√2.5=3.16 and thus we have a finite limit, but it is greater 
than 3. 
  

4.3. Order statistics 
In recent years, the topic order statistics has received a great deal of attention for two 

different reasons: 
• Exploratory data analysis, which started with Tukey [39], is based on order statistics, 

because they are robust, that is to say, they are not very sensitive to fluctuations in data or 
to outliers. 

• Non-parametric methods are based on order statistics. These methods require fewer 
assumptions to be applied, and so can be more widely employed than parametric 
inference. 

 
The study of order statistics presents computational as well as conceptual difficulties. 

First of all, the computation of median, quantiles and percentiles is taught with a different 
algorithm for data grouped in intervals than for non-grouped data. As we know, the decision 
of whether or not to group the data and the selection of the width of intervals is taken by the 
person who performs the analysis. Schuyten [40] has suggested that even university students 
find it difficult to accept two different algorithms for the same concept, and, moreover, 
different values for the same parameter depending on the chosen algorithm or on the width of 
the intervals. 

If we work with non-grouped data, the graphical representation of the cumulative 
frequencies is a discontinuous function, which takes a constant value between two 
consecutive values of the variables. Estepa [41] observed students' difficulties when 



interpreting the cumulative frequency graph, because a value in the y-axis may have two 
different images, or several different values in the y-axis may have the same image. 

Schuyten [40] has pointed out the large distance between the conceptual knowledge of 
the median and the algorithm employed to obtain its value. In going from the definition of the 
median as 'middle value of the distribution' or as the 'value such that exactly half the data are 
inferior to it' to its calculation, there are many steps which are not always sufficiently stated or 
not sufficiently understood. The final algorithm consists in solving the inequality: F\x) ≤ n /2, 
where n is the number of data items. It is necessary to solve this inequation in which F(x) is 
the empirical distribution function and may not be given in an algebraic way but only by 
means of a table of numerical values. So one must use interpolation in order to approximate 
F(x). 

Barr [42] also noticed the lack of understanding of the median in a pilot study with 
students aged 1 7 to 21 years. About 50% of students gave an incorrect answer to the 
following question: 
 

 The median in the following set of numbers: 1,5,1,6,1,6,8, is: 
 (a) 1 (A) 4 (r) 5 (r/) 6 (e) other value (/) don't know- 

 
Most students had grasped the idea that the median is a central value of something. 

Doubt as to what that something is, was evident. The students could interpret the- median as 
the middle point of the figures in the frequencies column, or as the middle point in the values 
of the variable column, or even as the middle point in the list of numbers before they have 
been ordered. 
  

5. Association and regression 
 

The idea of statistical association extends functional dependence, and is fundamental to 
many statistical methods which allow us to model numerous phenomena in different sciences. 
The term association is used to refer to the existence of statistical dependence between two 
random variables, whether they be quantitative or qualitative. The word correlation usually 
refers to the association between two quantitative variables. Both terms do not necessarily 
imply a cause- effect relationship, but merely the existence of a co-variation between the 
variables. 

At an elementary level, there are several different concepts in this topic area: 
contingency tables, linear regression, and correlation between quantitative variables. Another 
topic which is related to the idea of association is experimental design by which we study how 
statistical tools make it possible to reach conclusions about a world in which a large number 
of variables influence any particular measurement (Rubin and Rosebery [43]. 
 

5.1. Contingency tables 
 A contingency table or cross-tabulation, is used to present, in a summarized way, the 

frequencies in a population or sample, classified by two statistical variables. In its simplest 
form, when the variables only involve two different categories, it has the format presented in 
Table 1. 

Table 1. Typical format for the 2x2 contingency table 
 
 
 
 
 
 
 

 A No-A Total 
B a b a+b 

no-B c d c+d 
Total a+c b+d a+b+c+d 

 



We could propose to the students different problems concerning this type of table, for 
example: 
• Interpreting the information contained in the table. 
• Providing a judgement about the existence of association between the variables. 
• Computing and interpreting a coefficient to measure the strength of the association. 
 

Concerning the first category, we observe that this work is relatively complex, because 
from the absolute frequency contained in a cell, for example cell a, three different types of 
relative frequencies could be deduced; the unconditional relative frequency [a/(a+b+c+d)] 
and the conditional relative frequencies given the rows [a/(a+b)] or given the columns 
[a/(a+c)] of the table. 

There is very little research into either students' interpretation of relative frequencies in 
the contingency table or of the correlation coefficient. Nevertheless, research on human 
Judgement of association has been the object of great interest within psychology. 
Psychologists have used 2x2 contingency tables, as in the following example. 

  
We are interested in assessing if a certain drug produces digestive troubles in  old people. 
For a sufficient period, 25 old people have been followed, and these  results have been 
obtained: 

 
 Digestive 

troubles 
No troubles Total 

Taking the drug 9 3 17 
Not taking the drug 7 1 3 
 16 9 25 

 
Using the data in the table, reason if for this sample, having digestive troubles depends or not 
on taking the drug. 

 
If we analyse in detail the proposed task, it can be observed that, although apparently 

simple, it is a complex problem for the student. Its difficulty depends on certain data 
contained in the statement. In the example, there is an inverse association, because a smaller 
proportion of those taking the drug have digestive  troubles. A direct association, an inverse 
association or no association ,s possible as a function of the values given in the four cells of 
the table. 

Another fact that increases the difficulty of the task is the different number of old people 
in the two groups, that is to say, the marginal frequency of the independent variable (taking or 
not taking the drug) is not the same for its different values All these aspects which may 
influence the difficulty of the problem are called task variables of the problem (Kilpatrick 
[44]). Other possible task variables in this case are the strength of the relationship, and the 
concordance between the empirical association in the table and the student's beliefs about the 
expected association 

The study of reasoning about statistical association started with Piaget and Inhelder [45], 
who considered the understanding of the idea of association as the last step in developing the 
idea of probability. So the evolutionary development of the concepts of association and 
probability are related, and understanding the idea of association has as prerequisites the 
concepts of proportionality and probability. For this reason, Inhelder and Piaget [46] only 
studied reasoning about association with children in their formal operation stages IlIa and IIlb. 
They found that stage IlIa children only analyse the relation between the favourable positive 
cases (cell a in the table 1) and the total number of cases. In our example concerning a drug, 
stage IIIa children would deduce, incorrectly, the existence of a positive association between 
the variables, because of the greater number of people that fulfil the two conditions Drug 
taken and Digestive troubles (i.e. cell a) when compared with the frequencies in the other 



three cells. 
Adolescents at level IIIa only compare the cells two by two. Once they admit that the 

cases in cell d (absence-absence) are favourable to the existence of association they do not 
compute the relation between the cases confirming the association (a + d) and the other cases 
(b+c). This is only produced at 15 years of age (stage IIlb)according to Piaget and Inhelder.  

The same conclusions have been obtained in other research using adult students for 
example Smedslund [47]. Most adult students base their Judgement only using cell a or 
comparing a with h, that is, they use only the conditional distribution of having or not having 
digestive troubles in those who take the drug. This strategy would lead, m our case, to 
incorrectly conclude the existence of a direct relationship between the two variables, since in 
the group of people taking the drug there are more with digestive troubles than without. 

 The difficulty of this type of task is shown by the fact that, as Jenkins and Ward [48] 
pointed out, even the strategy of comparing the diagonals in the table considered as correct by 
Piaget and Inhelder, is only valid in the case of tables having equal marginal frequencies for 
the independent variable. Our example illustrates this difficulty. For the general case, Jenkins 
and Ward have proposed as the correct strategy examining the difference between the two 
conditional probabilities of A occurring when B is true and of A occurring when B is false: 

 
δ = a/(a+b)- c/(c+d) 

 
so, in our case, comparing the ratios 9/17 with 7/8 (conditional frequencies) would be needed. 

In addition to the difficulty of this topic, Chapman and Chapman [49] showed that there 
are common expectations and beliefs about the relationship between the variables that cause 
the impression of empirical contingencies. This phenomenon has been described as 'illusory 
correlation', because people maintain their beliefs and overestimate the association when they 
believe that a causation exists between the two variables (Jennings et al. [50]). Finally, as 
Scholz [15] has described, posterior studies have shown that for the same association problem 
structure, people adopt different strategies and even the same person may use different 
strategies in different contexts. 
 

5.2. Linear regression and correlation 
As we have pointed out, psychological research about association has been linked to the 

problem of taking decisions in uncertain environments (Scholz [51]). The interest of these 
studies is to analyse the way in which human beings take decisions, because of the profound 
implications in areas such as medical diagnosis, economy,  and law. Teaching is not the aim, 
in general. This explains the little interest in this research for the understanding of concepts 
linked to linear regression and correlation, which are not so often employed in the area of 
decision taking. 

The study of the relationship between two quantitative variables includes two different 
problems: correlation and regression. In the study of correlation the two variables play a 
symmetrical role. The aim is to determine whether the two variables co-vary or not, whether 
this occurs in the same direction (positive correlation) or in  the opposite direction (negative 
correlation) and to measure the strength of this association. 

If a relatively strong association is perceived, the problem arises of finding a function 
y=f(x) (regression line) that could be used approximately to predict the values of y, from the 
values of x. Since the dependence is not functional, this prediction refers to the mean value of 
y for given x. As we know, this problem has no unique solution, and a sequence of personal 
choices is needed: 
•  To select the family of functions from which the line of regression will be selected 

(linear, exponential, . . .). The decision would be based on previous knowledge about the 
phenomenon, as well as from analysis of the shape of the scatter plot. 

• To choose the decision criteria. When we have decided, for example, to take a linear 



approximation, we could use as a criterion the least square approach or to use the Tukey 
line. The student's understanding of the chosen criterion would allow him to correctly 
interpret the line of regression and the relation of the line with the data (goodness of fit). 

  
Finally, when the line of regression has been determined it is still possible to commit 

errors in its interpretation or in its employment to make predictions. Campbell [33] has 
pointed out that some students consider that extrapolation is impossible. 
 

5.3. Experimental design 
Rubin and Rosebery [43] have planned and observed a teaching experiment in order to 

study teachers' difficulties with stochastic ideas. They reported that both the students and their 
teacher had misinterpreted some of the basic ideas that underlie experimental design. 

One of the lessons in the aforementioned teaching experience used a basketball shooting 
activity whose purpose was to determine the effect of distance (distances were varied 
regularly from 1 to 9 feet) and positional angle (for angles of 0, 45 and 90 degrees). Each 
student shot one ball from each combination of distance and angle. The aim of the lesson was 
to explore the separate effects and the interaction of these two variables. 

The observation of the discussion between the teacher and the students, concerning the 
idea of independent, dependent and extraneous variables in the- shooting experiment, has 
shown the confusion between these concepts. Some students suggested as possible 
independent variables individual characteristics, such as the height or ability of each student. 
Given the height of the basket which was fixed during the experiment was considered as an 
independent variable by some of the students. 

Some other students suggested that lighting could differ for different combinations of 
angle and distance, so the students and the teacher were left with the impression that the 
presence of such influences made conclusions about angle and distance impossible. 

Finally, Rubin and Rosebery have remarked on the difficulty of distinguishing between 
characteristics of individuals that have no effect on the outcome of the experiment from other 
variables that may have an influence. Understanding the role of random allocation in 
disregarding individual differences was also found to be a cause of difficulty.  
 

6. Inference 
 

6.1. Sampling 
The key idea in inference is that a sample provides 'some' information about the 

population and in this way increases our knowledge about the population. It does not furnish 
complete information, but an approximation. As Moses [52] points out, 'one can think of 
statistical inference as a collection of methods for learning from experience'. Rubin et al. [53] 
noted that, in practice, this implies the possibility of finding the values of the parameters of 
interest in the population, that is to say, obtaining confidence intervals for these parameters. 

Understanding this fundamental idea supposes a balance between two apparently 
antagonistic ideas: sample representativeness and variability. The first one suggests that, 
when the process of selecting the sample has been performed properly, the sample will often 
have characteristics similar to those of the population. The second one, shows us that not all 
the samples are identical; so not all of them can resemble the population from which they 
have been selected. Finding the balance point between total information and null information 
about the population is  complex, because of the dependence on three factors: population 
variability, sample size and level of confidence. 

Research into errors concerning the idea of sampling has been important in psychology 
in the context of decision taking, notably the work of Kahneman and Tversky. A summary of 
their work can be found in Kahneman et al. [54] who attribute these errors to the use of 
certain judgemental heuristics in statistically naïve people. The term heuristics is employed in 



psychology, artificial intelligence and problem solving (Groner et al. [55]). Although there is 
no general consensus about the meaning of the term heuristics, it is normally used to refer to 
cognitive processes or mechanisms that are employed to reduce the complexity of a problem, 
during the solution process. 

Kahneman and Tversky have defined three fundamental heuristics in probabilistic 
judgements: representativeness, availability, and adjustment and anchoring. Also they have 
studied the associated biases and the theoretical and practical implications. 

According to the representativeness heuristic, the likelihood for samples are estimated in 
accordance with how well they represent some aspects of the parent population. In 
consequence, there is insensitivity to the sample size and over-confidence in small samples. 
This phenomenon is known as 'belief in the law of small numbers'. For, example, let us 
consider the following problem: 

 
 A certain town is served by two hospitals. In the larger hospital about 45 babies are born 
each day, and in the smaller hospital about 15 babies are born each  day. As you know, 
about 50% of all babies are boys. However, the exact  percentage varies from day to day. 
Sometimes it may be higher than 50%,  sometimes lower. For a period of a year each 
hospital recorded the days on  which more than 60% of the babies born were boys. 
Which hospital do you  think recorded more such days? 
 (a) The larger hospital (b) the smaller hospital (f) about the same. 

 
Many people believe that (c) must be the correct answer, due to the fact that they 

consider that in both hospitals the proportion of boys is the same, and believe this is the only 
fact of importance in order to determine the probability of the required events. They do not 
pay attention to the sample size, although probability theory shows us that there is more 
fluctuation in the values of the proportion in small samples than in large samples.  

According to Kahneman and Tversky, this over-confidence in small samples has serious 
consequences in the application of statistics, especially in research. The 'believer in the law of 
small numbers' underestimates the size of confidence intervals, overestimates the significance 
in tests of hypothesis, and is over-confident in obtaining the same results in figure replications 
of the experiment. 

Another consequence of applying the representativeness heuristic is the 'gambler's 
fallacy'. For example, many people believe that after a run of heads, tails is more likely to 
come up. 

When comparing the biases in probabilistic judgements with the expert's conception of 
random sampling, Pollatsek et al. [56] noticed that experts widely use  'urn-drawing' as the 
model for random sampling. In this model, random sampling is  viewed as isomorphic to the 
process of drawing a number of balls from an urn,  replacing them and then drawing again. 
Naive subjects might have no mechanistic way of thinking about this process or might have 
an erroneous process model of  random samples, from which representativeness of even small 
samples would follow.  Since these people may never have drawn a ball out of an urn, this 
model is itself  theoretical and not genuinely practical. As Steinbring [57] has noted, the idea 
of  independence has also a theoretical character and it is difficult to be sure of its 
applicability in a practical context. For this reason independence provides an example of the 
distance between the conceptual understanding of a concept and the ability to apply this 
concept in problem solving (Heitele [58]). 

Another problem related to sampling is the different levels of concretion of the same 
statistical concept in descriptive statistics and in inference (Schuyten [40]). In descriptive 
statistics the case is the unit of analysis (e.g. a person, an object) and we compute the mean x 
of a sample of such units. In inference, we are interested in obtaining information about the 
theoretical mean or expectation E(X) in the population from which the sample has been taken. 
We consider the particular sample as a unit from another different population—the set of all 



the possible samples with the given size that could be obtained from the parent population. 
We have changed the analysis unit; it is now the sample and we speak about the mean of the 
sample as a random variable. So, we study the distribution of the mean in the sampling 
process and the expectation E(X) of this random variable. It is necessary to distinguish 
between the theoretical mean in the population, which is an unknown constant, the particular 
mean obtained in our sample, the possible values of the different means that would be 
obtained with the different possible samples of size n in the population (a random variable), 
and the theoretical mean of this random variable, which coincides with the population mean 
for a random sampling process. This is very difficult conceptually. 
  

6.2. Test of hypothesis 
In some countries, one of the topics introduced in the last years of secondary education 

is the test of hypothesis. The scope of application for hypothesis testing is wide indeed, but, as 
Brewer [59] has commented, this area of inference is probably the most misunderstood, 
confused and abused of all statistical topics. For this reason, and because this topic can be 
considered complex for the student, it is a widespread and exciting area for mathematical 
education researchers to explore. 

The term test of hypothesis could be applied to a great number of statistical procedures: 
test of differences between means, analysis of variance, non-parametric procedures, 
multivariate tests .... All these procedures share a common nucleus: a set of basic concepts 
(null hypothesis and alternative hypothesis, level of significance, power function, etc.), and 
some general procedures which are modified for particular cases. The correct application of 
these procedures involves many kinds of choices, including: the sample size, the level of 
significance a and the appropriate statistic. In particular, Peskun [60] has pointed out students' 
difficulties with the following aspects: 
a. the determination of the null hypothesis H0 and the alternative hypothesis H1; 
b. the distinction between type I and type II errors; 
c. understanding the purpose, use and availability of operating characteristic curves or power 

curves; and 
d. understanding the terminology used in stating the decision. 
  
Similar difficulties have been described by Reeves and Brewer [61], Johnson [62] and 
Shoesmith [63]. 
 

One of the key aspects in the correct application of a test of hypothesis is understanding 
the concept of level of significance, which is defined as the 'probability of rejecting the null 
hypothesis, when it is true'. This definition is expressed in the following identity: 
 

(1) α = P(Rejecting H0  H0 true) 
 

Falk [64] has pointed out the interchange of the conditional event and the condition a 
frequent error in this definition and the mistaken interpretation of the level  significance as 
'the probability that the null hypothesis is true, once the decision to reject it has been taken', 
that is: 
 

(2) P(Ho true we have rejected Ho) 
  

She suggests, as one of the possible causes of this error, the language used in the 
definition of the level of significance, which is also referred to as 'the probability of 
committing a type I error'. In this expression, it is not explicitly established that we are 
dealing with a conditional probability, so, it is supposed by the student that it is possible to 
define a 'conditional event'. In consequence, the distinction between the two conditional 



probabilities (1) and (2) is not being made. 
The correct definition of the level of significance a would be expressed in the following 

statement: 
 

(i) A significance level of 5% means that, on average 5 times out of every 100 times that the 
null hypothesis is true, we will reject it. 

  
Research by Birnbaum [65], and others, has shown that some students consider correct 

the following incorrect definition of a: 
  
(ii) A significance level of 5",, means that, on average, 5 times out of every 100 times we 

reject the null hypothesis, we will be wrong. 
 

 Statements (i) and (ii) were presented to university students by Vallecillos [66] who  
asked them whether each was true or false, and then she analysed the students'  reasoning. She 
also analysed the concept of level of significance and its relation with  other concepts that 
intervene in a test of hypothesis. She distinguished four different  aspects in the understanding 
of this concept and she identified misconceptions  related to each one of these aspects: 

 
  (a) The test of hypothesis as a decision problem. The test of hypothesis can be  
considered as a decision problem between two exclusive and complementary  hypotheses, 
with the possible consequences of committing or not committing one of  the two types of 
error, that are disjoint but not complementary events. Nevertheless,  some students consider 
the type I and 11 errors to be complementary events, so that  in their view the probability of 
committing one or the other of these errors would be  unity. 
  

(b) Probabilities of error and relation between them. The two types of error have 
probabilities α (type I) and β (type II). It is necessary to understand the conditional  
probabilities that occur in the definition of α and β, of the dependence of β in terms of  the 
unknown value of the parameter, and the relation between α and β. Besides the  error pointed 
out by Falk [64], mentioned above, other misleading interpretations of the level of 
significance have been found: suppressing the condition in the  conditional probability which 
used to define a; interpreting a as the probability of  any kind or error (both types I and II) in 
the decision taken. 

 
(c) level of significance as the risk of the decision maker. The values α and β 

determine the risks that the decision maker is willing to assume m his decision and, along 
with the hypothesis, will serve in establishing the decision criterion. Some students believe 
that changing the level of significance does not change the risk of Type II error. 

 
  (d) Interpretation of a statistically significant result. Obtaining a statistically 
significant result leads to the rejection of the null hypothesis. However, obtaining a 
statistically significant result does not necessarily imply any practical significance, but  some 
students confuse these. Also, some students believe that a statistically significant result 
corroborates the null hypothesis rather than rejecting it. 
 

White [67] has mentioned the case of misinterpretation of a statistically non-significant 
result. He also considered a different aspect concerning peoples understanding of statistical 
significance which is the problem of multiple comparison that occurs when many significance 
tests are applied to one set of data. For example an epidemiological investigation might 
measure 150 variables on each person in a group of healthy people and also measure the same 
variables on each person in a group of people with a certain disease. Now, if we choose a 



significance level as 0.05 then since 150 x 0.05 =7.5, 7.5 'statistically significant results’ are 
to be expected, on average, even if the disease has no relationship at all with any of the 
variables studied (Moses [52]). 

Finally we refer the reader to the book edited by Morrison and Henkel [68] which 
documents the considerable amount of indiscriminate use of significance tests in research, 
which is a clear indication of the difficulty, misinterpretation and misuse of significance tests. 
 

7. Final remarks 
 

In a survey of research literature Garfield and Ahlgren [141 enunciated reasons for some 
of the difficulties which have arisen in teaching statistical concepts at the college level: 
• Many of the statistical concepts, such as probability, correlation, per cent, require 

proportional reasoning, known to be a difficult concept in mathematics. . . 
• The existence of false intuitions which students bring to the statistics classroom Many of 

these intuitions are well known in the case of probability (Piaget and Inhelder [45]), 
(Fischbein [69]), but very few have been studied for statistical concepts. 

• Sometimes students have developed a distaste for statistics, because they have been 
exposed to the study of probability and statistics in a highly abstract and formal way. 

 
There are two more reasons that possibly influence the difficulty of the subject. First 

probability and statistics have developed recently. Although there is, at present, a well 
established axiomatic system for probability, due to the work of Kolmogorov the controversy 
about the meaning of the term 'probability- has not been Spoiled and there are different 
traditions: empiricists, subjectivists, etc. (Fine [70]). 1 his controversy shows itself in 
statistical inference-, there is a debate as to whether it is possible or not to attribute a 
probability to a hypothesis in both the classical and Bayesian approaches (Rivadulla [71]). 
Numerous research works have shown that, during the learning process, the student must 
frequently overcome the same epistemological difficulties that have been found in the 
historical development of knowledge. 

Second, many statistical concepts have arisen outside mathematics. Statistics has been 
from its very beginning an interdisciplinary science. The most important periods in its 
development have been marked by contributions from different fields in which there was the 
necessity of solving specific problems. In the classroom, the concepts are presented in 
isolation from their original applications which contributed to their global meaning 
(Steinbring [72]). For example, the concept of mean has special different meanings when 
applied to the centre of gravity, to life expectation, or to an index number. 

In summary, as Green [73] has pointed out: 'Statistical concepts provide a fascinating 
area to explore. What the statistician regards as straightforward and obvious (terms such as 
average, variability, distribution, correlation, bias, randomness, . . .) are the distilled wisdom 
of several generations of the ablest minds. It is too much to expect that there will not be a 
struggle to pass on this inheritance'. 
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